1.1.4 MAIN model: No male:educ interaction
brm_MAIN_nor_ints_no_educ_male <-
brm(bf(
cft ~ (1 | mig) + male + (1 | mig:male) + (1 | mig:educ) + s(age, by = educ),
sigma ~ (1 | mig) + (1 | educ) + male + s(age)
),
chains = 4,
seed = 810,
file = "../unshareable_data/brms/cft/brm_MAIN_nor_ints_no_educ_male",
data = tl) %>%
add_criterion("loo")
pp_check(brm_MAIN_nor_ints_no_educ_male)
brm_MAIN_nor_ints_no_educ_male
## Warning: There were 58 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: cft ~ (1 | mig) + male + (1 | mig:male) + (1 | mig:educ) + s(age, by = educ)
## sigma ~ (1 | mig) + (1 | educ) + male + s(age)
## Data: tl (Number of observations: 9980)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Smoothing Spline Hyperparameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sds(sageeducISCED3b:Uppersecondaryvocational_1) 18.26 7.96 6.76 37.20 1.00 741 1493
## sds(sageeducISCED1:Primary_1) 81.35 27.50 39.77 147.38 1.00 1375 2150
## sds(sageeducISCED2:Lowersecondary_1) 47.88 21.06 19.77 99.39 1.00 732 1575
## sds(sageeducISCED3a:Uppersecondarygeneral_1) 13.87 8.77 1.04 34.80 1.01 970 1035
## sds(sageeducISCED4:PostMsecondary_1) 8.37 4.51 2.28 19.33 1.00 1965 2451
## sds(sageeducISCED5a:Tertiarye.g.college_1) 18.29 7.24 7.12 35.70 1.00 955 840
## sds(sageeducISCED5b:Tertiarye.g.coMopprogram_1) 9.93 4.81 3.51 21.94 1.00 1486 2050
## sds(sageeducISCED6:PhD_1) 15.82 7.47 6.81 35.55 1.00 1951 1897
## sds(sageeducST1:Primary_1) 10.99 12.86 0.31 45.31 1.00 2803 2129
## sds(sageeducST2:Lowersecondary_1) 12.44 10.13 0.58 38.22 1.00 2056 1937
## sds(sageeducST3:Intermediatesecondary_1) 24.03 13.97 9.13 59.67 1.00 2357 2093
## sds(sageeducST4:Uppersecondary_1) 27.32 11.83 12.73 59.93 1.00 2288 2297
## sds(sageeducST5:Comprehensiveschool_1) 29.53 17.16 11.69 77.36 1.00 2129 1569
## sds(sageeducST6:Otherschool_1) 24.59 12.63 10.14 54.39 1.00 2688 1921
## sds(sageeducST7:Nolongeratschool_1) 15.52 16.93 0.45 61.64 1.00 1971 1756
## sds(sigma_sage_1) 0.13 0.14 0.00 0.51 1.00 1495 2083
##
## Multilevel Hyperparameters:
## ~mig (Number of levels: 6)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.82 1.27 1.30 6.13 1.00 1536 2148
## sd(sigma_Intercept) 0.10 0.05 0.04 0.24 1.00 1240 1790
##
## ~mig:educ (Number of levels: 89)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.07 0.34 0.51 1.81 1.00 583 1115
##
## ~mig:male (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.24 0.26 0.01 0.94 1.00 1461 1433
##
## ~educ (Number of levels: 15)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(sigma_Intercept) 0.10 0.02 0.06 0.16 1.00 1301 2059
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 36.40 1.35 33.62 39.04 1.00 1183 1553
## sigma_Intercept 1.98 0.06 1.87 2.09 1.00 1156 1702
## maleTRUE 1.47 0.28 0.96 2.06 1.00 2573 1655
## sigma_maleTRUE 0.01 0.01 -0.02 0.04 1.00 6438 2918
## sage:educISCED3b:Uppersecondaryvocational_1 -97.34 40.10 -185.29 -28.95 1.00 751 1582
## sage:educISCED1:Primary_1 -349.22 112.70 -590.42 -143.95 1.00 2041 2377
## sage:educISCED2:Lowersecondary_1 -254.79 100.10 -477.46 -91.02 1.00 691 1665
## sage:educISCED3a:Uppersecondarygeneral_1 3.47 31.43 -51.78 75.36 1.00 1774 2040
## sage:educISCED4:PostMsecondary_1 -9.42 20.69 -50.47 34.56 1.00 1978 1990
## sage:educISCED5a:Tertiarye.g.college_1 28.26 31.78 -28.76 97.48 1.00 871 1892
## sage:educISCED5b:Tertiarye.g.coMopprogram_1 -39.31 23.64 -92.33 -1.72 1.00 1209 1765
## sage:educISCED6:PhD_1 28.16 36.49 -41.45 107.61 1.00 2098 2187
## sage:educST1:Primary_1 30.05 36.75 -50.05 113.67 1.00 1374 1315
## sage:educST2:Lowersecondary_1 52.39 38.99 -26.52 138.91 1.00 1856 1518
## sage:educST3:Intermediatesecondary_1 54.63 67.93 -70.37 209.33 1.00 2016 1441
## sage:educST4:Uppersecondary_1 35.71 70.05 -108.10 183.17 1.00 2221 1962
## sage:educST5:Comprehensiveschool_1 22.42 86.31 -173.23 170.29 1.00 1820 1084
## sage:educST6:Otherschool_1 43.65 65.45 -91.58 174.09 1.00 2142 1969
## sage:educST7:Nolongeratschool_1 24.07 62.81 -79.21 179.78 1.00 1519 1067
## sigma_sage_1 -0.01 0.32 -0.60 0.72 1.00 2575 2010
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
loo_compare(brm_MAIN_nor_ints_no_educ_male, brm_nor_ints)
## elpd_diff se_diff
## brm_nor_ints 0.0 0.0
## brm_MAIN_nor_ints_no_educ_male -9.7 7.3
ggsave("figures/S05_pp_check.jpeg", width = 8, height = 4)
educXmale_vs_not <- age_norm_comparisons(
brm_nor_ints, brm_MAIN_nor_ints_no_educ_male,
labels = c("Raw", "All ints", "No Educ*Male Int"),
prediction_transform = list(
function(x) round(pmax(0, pmin(56, x))), # for handling normal predictons
function(x) round(pmax(0, pmin(56, x))) # for handling normal predictions
),
palette = c(
"#BC3C29FF",
# "#0072B5FF",
# "#20854EFF",
# "#7876B1FF",
"#6F99ADFF",
# "#E18727FF",
# "#FFDC91FF",
"#EE4C97FF"
),
output_file = "data/results/educXmale_vs_not.rds"
)
educXmale_vs_not[-1]
## $overall_estimates
## # A tibble: 3 × 5
## Mean SE_of_Mean SD SE_of_SD Model
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 37.4 NA 8.19 NA Raw
## 2 35.6 0.107 8.56 0.0920 RPP_brm_nor_ints
## 3 35.7 0.115 8.58 0.0990 RPP_brm_MAIN_nor_ints_no_educ_male
##
## $means_plot
##
## $SDs_plot
## Warning: Removed 55 rows containing missing values or values outside the scale range (`geom_segment()`).
##
## $SEs_plot
##
## $percentile_plot
Looks much better, this prediction constellation seems okay.